Blue Hawaii Hybrid Electrostatic Amplifier for Stax Omega II Headphones.

by Kevin Gilmore
(Project Editor: Chris Young)

gilmore4_0.jpg

The Blue Hawaii amp is my latest design in my search for the perfect amp to pair with my Stax Omega II headphones. The genesis for this hybrid electrostatic headphone amplifier occurred when I was in Hawaii on vacation, at a fancy hotel on Maui. Sitting at the bar on the beach, drinking “Blue Hawaiis,” I drew the schematic for the amp on a placemat. The design is my conception of the mysterious and rare Stax T2 amp, which I have never been able to find at anything resembling a rational price.

I searched out any information I could find on the T2 in an attempt to create my own version. I was able to determine that it used EL34s as output tubes in a grounded grid configuration, which is the lowest distortion tube output circuit known. It also used 6DJ8s as input tubes with some solid state in the second and third stages. My design uses the first and second stages from my solid state electrostatic amplifier coupled with a third FET stage and then the final grounded grid stage.

My design ended up with a fairly large amplifier pulling significant amounts of power which results in a very smooth and extended frequency range from DC to over 200khz (-3dB at 400khz). Of all my electrostatic amps, this one has the largest output voltage swing. This is not an amplifier for the timid, nor is it a good idea to build this as your first project, though some, however, have actually done so.

The Circuit

gilmore4_1a.png
gilmore4_1b.png
Figure 1
(Click here to see single-image schematic of amplifier.)

Figure 1 is the amplifier schematic. The entire amplifier has a differential topology from input to output to get a balanced input and for lower noise, less ground loop problems. The first stage is a differential amplifier with feedback directly from the output stage. It works equally well with both balanced and unbalanced audio input sources. The step attenuators from Goldpoint make good volume controls for this stage. The JFET device (Q1) is a dual JFET all on one wafer. It is known for extremely low noise and excellent matching, and is used in a number of expensive designs, such as the Nelson Pass amplifiers. Q17 is a current source that sinks 3mA.

Because the amp is totally DC coupled from input to output, drift in the input stage is a bad idea. Since the first two stages run in current mode, the JFET input is more linear than a pair of bipolar transistors. Dual transistors all on one wafer suitable for audio use are hard to find these days. The FETs steer current away from the current sources Q2 and Q3. Together Q2 and Q3 each supply 2mA or a total of 4mA. The Q17 current source takes away 3mA leaving 0.5mA in each of Q4 and Q5, but some of the sink current is coming from the output feedback, so each FET is actually using somewhere between 0.5mA and 1mA.

The approximate voltage gain of this stage is 5; this stage really runs in current mode. The unit was designed to work equally well in both balanced and unbalanced mode. For single-ended signals, ground either the + or – input and apply signal to the other. The much higher impedance of the JFET works better when one side is grounded for unbalanced inputs.

The second stage starts with a constant current source (Q2 and Q3). The current source feeds a common base amplifier (Q4 and Q5). The common base amplifier feeds a modified Vbe multiplier. I believe a famous designer is now calling this circuit a current tunnel. It’s the most linear way of translating the voltage down to the bottom rail. The voltage gain of this section is about 4. The basic idea of the first two stages is to supply the third stage with a very fast low impedance drive signal that is referenced to the bottom rail.

The currents flowing into the common base amplifier (Q4 and Q5) are the difference between what Q2 and Q3 are supplying and what the FET is taking away. The rest of the current goes down the tunnel to the vbe multipliers (Q6 and Q7) that convert the current back to voltage. The current sources in the second stage supply 2 mA each. With no signal, the FETs take 1 mA, leaving 1 mA going through the common base amplifier into the bottom transistors, which are wired as Vbe multipliers (like a zener diode in series with a resistor, except a lot less noisy). This generates the 13 volts (referenced to – rail) necessary to properly bias the third stage.

The third stage is another differential amplifier (Q13 and Q14) being driven via another constant current source (Q10 and Q16). The voltage gain is about 200. Q11 is the power supply for this stage and makes a 100 volt power supply with -400V as the reference. The power supply voltage for this stage is kept down to 100 volts to reduce the Miller effect and keep the frequency response up. The higher output impedance of this stage is lowered by the use of 2SJ79 transistors, which are used as zero voltage gain emitter followers. The use of FETs in this stage coupled with the current source further reduces the distortion and provides for a solid low impedance drive signal for the output stage.

The 4th and final stage is a tube in grounded grid configuration (V1/Q8 and V2/Q15), similar to the common base amplifier in the 3rd section of my solid-state current-domain electrostatic amp. Q9 and Q12 are high compliance current sources and supply 25mA of bias current. Think of them as linear pull-up resistors for current (in fact, one builder has replaced the current sources with large resistors). The use of a current source here instead of load resistors acts to further linearize the output stage and reduce output distortion. V1 and V2 are the equivalent of common base amplifiers and do the entire rail-to-rail output voltage swings.

With feedback, the overall voltage gain of the amp is exactly 1000. The frequency response is kept high due to the low impedance cathode drive. The EL34s are biased at 10 watts and have an 800V voltage swing (by comparison, the output tubes of my original DC-coupled electrostatic amp are biased at 2 watts with a 600V swing), resulting in a frequency response well in excess of 100kHz into a 150pF load. (+0/-0.1dB).

gilmore4_2.png
Figure 2

A regulated power supply design is shown above. The ±15V supply is made with the standard 7815/7915 regulators. The high voltage supply is a pair of 400 VDC supplies, glued together at the output (P-channel MOSFETs are a lot more money than the equivalent N-channel MOSFET). In each section, beginning with a 460V raw supply, a PNP transistor (2SA1968) is used as a current source to feed the 400V zener reference. Then a N-channel FET is used as a high impedance, input voltage follower and outputs 400VDC. By the way, the same exact supply with a 350V zener reference string instead and a slightly smaller transformer (without filament windings) is what I use now for the solid state current domain headphone amp.

The bias supply is a voltage doubler with an adjustable reference. It has a range of about 350VDC to 650VDC. For low bias Stax headphones, put a 10M resistor to ground at the end of the 4.7M. to make the output voltage .66 times the voltage before the 4.7M, which puts it in the range for low bias.

Construction

gilmore4_3.jpg
(Click here to download pc board patterns in pdf format. 1)
(Click here to download pc board patterns in pdf format. 2)
(Click here to download pc board patterns in pdf format. 3)

Caution: This project involves working with high voltages, so be extremely careful! Keep one hand behind your back at all times. 800VDC across both arms might possibly stop your heart.

This amp was assembled on three printed circuit boards (two for each channel of the amp and one for the power supply) and housed in separate enclosures. A complete set of pc board patterns (pdf format) can be found above. They could be sent to just about any circuit board manufacturer to have boards made. The top of the board is almost all groundplane. All the parts, including the tubes, are mounted on these boards – the tubes are installed in pc-mounted ceramic tube sockets from Parts Express. The tubes must be exposed through the chassis. They dissipate 20W each (actually 10 to 12 watts of plate dissipation plus another 6.3V * 1.6A = 10 Watts of filament power).

gilmore4_5.jpg

It was so much easier to do a pc board for this amp, but if I were to make a prototype, I would again use the 0.1mm perf board; the layout look much like the circuit board. (Note: For a layout in a single chassis, see the interior view of Headamp.com’s Blue Hawaii amp below.) 99% of the wiring would be on the bottom, and it would be, therefore, rather flat. Mounting the tubes would be trouble though, and would cause mechanical problems. The tubes are fairly heavy and get stinking hot. Each chassis measures 12″ x 10″ x 3.5″. (Note: Headamp.com is selling the Blue Hawaii design in a single chassis measuring about 16.5″ W x 16.0″ D x 3.5″ H and may sell the Blue Hawaii pc boards. Please contact Headamp for more information.)

I have Mullard EL34 tubes, but keep them put away due to what I could sell them for if I wanted. I actually used the National Union tubes from Richardson Electronics which cost $11.50 US each.

gilmore4_6.jpg

All of the parts except the 2SA1968 have lots and lots of sources such as Digi-Key, MCM Electronics and Mouser Electornics. Only B&D; Enterprises has the 2SA1968 in the United States. In Japan and Canada, they can be ordered from Sanyo direct – the minimum order is 100 at a time, but then they are $1.25 each or so.

Q9 and Q12 are each made of six 2SA1968 transistors in parallel with one 2SA1968 as the driver. Matching the transistors is not required – unless one of the 2SA1968s is way off compared to the rest in which case it might get way too hot.

All resistors are 0.25W except where labeled. It is important to have all the pnp current source transistors correctly mounted to a large heatsink with silicon impregnated washers. If any one pnp transistor gets too hot it can short out the whole current source.

gilmore4_7.jpg

Standard tab heat sinks will do for the 2SK216 and 2SJ79 transistors, but the 2SA1968 and 2SC3675 transistors must be mounted a big heatsink (one for each channel), capable of dissipating 20 Watts of heat. I obviously fabricated them, but otherwise they can be obtained from Conrad Heatsinks cut to length. The IRFBC30 MOSFETs in the power supply must be heatsinked too: Mouser part number 532-529902b25.

gilmore4_8.jpg

The Stax SRC-5 headphone jack came from AudioCubes.com. Since the price has gone up to $19 each (I paid $10), it may be more cost effective to use the Allied jacks (see the current domain amp project article). Allied has a $25 minimum order, the cost of three pieces. Then they must be filed down on a lathe. Actually I am buying the male connectors from Allied, because no one else sells them. The male connectors are much easier to convert to standard Stax plugs. The power supply-to-amplifier connectors are the Amphenol military 12-pin connectors. The 4 connectors (two male and two female) were $130.

gilmore4_4.jpg

The custom Victoria Magnetics power transformer has these specs: 2 x 330VAC/150mA, 36VCT/100mA, 2 x 6.3V/5A (filament supplies). Everything with Victoria Magnetics is custom. I paid $110 for the transformer with shipping. They know about the Blue Hawaii design and will supply the correct transformer on request. For safety, I recommend a 2A/110Vac fuse located in the input line to the power supply.

Setup and Results

Test voltages (with the amp at idle) are shown in red on the schematic and are with respect to ground. To set up the amp, adjust the two pots in each channel of the amp. P1 controls the differential output voltage. Put a voltmeter between the 2 stators of one channel of the headphone and set this pot for zero. P2 controls the voltage with respect to ground. Put a voltmeter between any stator and ground and set for zero. Then repeat both adjustments a few times. The plates of both tubes should measure 0 volts with respect to ground when the pots correctly adjusted. Once the pots are adjusted, that’s it – there’s no change from headphone to headphone.

Setting the bias voltage depends on the headphones. For Stax headphones that can accept a high bias voltage, adjust the pot for 560V. I do not think that the Omega II headphones can be damaged by this amp unless the bias is set way too high. If the bias is set right, the outputs are close to 0V at idle, and all the LEDs are lit, then the amp pretty much has to be working correctly. Now if one or more of the outputs is stuck at +400V or -400V, then something is seriously wrong and needs to be fixed. An oscilloscope really helps.

gilmore4_9.jpg

Adjust the pot to 580 volts for Sennheiser HE-90 and HE-70 headphones or leave it at 560V. For Koss headphones, adjust the bias for 600V. To use the Sennheiser HE60 headphones with this amp, I made the adapter shown above. Those are RS-232 female connector pins that fit the HE60 pins perfectly. By hand I cut a circuit board with lands exactly 3.5mm apart put the pins on the HE60 connector, lay them down on the circuit board and solder. Then attach wires and a standard stax plug.

The amp can output 1500 V p-p measured stator to stator. At 800Vp-p, THD is less than 0.004% from 20Hz to 20kHz. The actual frequency response is 0 to 100kHz (-3dB at 150kHz) into an Omega II load. Compared to the sound of my previous tube amplifier, the bass is no longer tubby; it’s very sharp and tight. The high end is no longer rolled off, so female voices sound much more real. If the bias supply is reduced to 280V, the amplifier will drive all electrostatic headphones. I tried it last night on a pair of SRX’s. I never ever heard them sound so good.

Previously with a standard dummy head, I measured the SPL in Omega 2 headphones driven by this amplifier. With a drive signal of 800Vp-p per side, the resulting spl is 106dB. THAT’S LOUD! The amp can put out 1500 volts peak-to-peak, and thats louder! I just ordered a pair of Stax SR-001 MkIIs, which can reach up to 120dB. My ears distort before the amplifer/headphones do. It is quite loud at clipping, but the clipping is a hard clip with no oscillation or ringing. To use the amplifier with electret headphones, delete the bias voltage. And probably keep the output swing under 200V. Electrets phones when driven with this amplifier can probably get very very loud.

Several of my previous electrostatic designs are available in the Headwize Projects section. Comparing the Blue Hawaii to my all solid-state current domain amplifier, they really are more the same than they are different, but in general, the differences are the differences between tubes and solid state, such as a much smoother high frequency response, which in the case of the Blue Hawaii goes well beyond 500kHz. Additionally, the four times power consumption of the Blue Hawaii means a much stiffer and tighter bass response. Even though both are flat to zero and test similar, the BH bass is much more apparent and tighter.

c. 2004 Kevin Gilmore.

A Current-Domain Electrostatic Amplifier for Stax Omega II Headphones.

by Kevin Gilmore

gilmore2_0

I bought the Omega II headphones without the amplifier ($1995 + shipping from EIFL Corporation in Japan). I would love to listen to the SRM-007t or SRM-717 amplifier, but really do not want to fork over $4000 to do so. I have been working on this solid state Stax headphone driver for a long time. It satisfies all of the design requirements. Of course it sounds absolutely amazing which is clearly the goal here. There are no capacitors in the signal path. Its fully DC coupled. No expensive parts, and can be built by just about anyone.

The amplifier operates primarily in the current domain. The first stage is a voltage controlled current sink. The second stage is a current-controlled voltage source. The fourth stage is a constant current sink. The main advantage of current domain amplifiers is speed. Standard voltage gain amplifiers with lots of gain are affected by the Miller Effect which prohibits extended frequency response.

This solid state amp is so much better than my tube amp that I no longer listen to it. I’m not a solid state snob; it’s just plain better. The people who have listened to this amplifier (some of whom were giants in the industry in their day) love it, much more than my tube amp. I love it too. I can’t stop listening to it. The tube amp has moved into a secondary position in my listening rack.

How It Works

gilmore2_1.gif

The first stage is a differential amplifier with feedback directly from the output stage. It works equally well with both balanced and unbalanced audio input sources. The step attenuators from Goldpoint make good volume controls for this stage. The JFET device is a dual JFET all on one wafer. It is known for extremely low noise and excellent matching, and is used in a number of expensive designs, such as the Nelson Pass amplifiers.

Because the amp is totally DC coupled from input to output, drift in the input stage is a bad idea. Since the first two stages run in current mode, the JFET input is more linear than a pair of bipolar transistors. Dual transistors all on one wafer suitable for audio use are hard to find these days.

The approximate voltage gain of this stage is 5. But it really runs in current mode. The unit was designed to work equally well in both balanced and unbalanced mode. For single-ended signals, ground either the + or – input and apply signal to the other. The much higher impedance of the JFET works better when one side is grounded for unbalanced inputs.

The second stage starts with a constant current source. The current source feeds a common base amplifier. The common base amplifier feeds a modified Vbe multiplier. I believe a famous designer is now calling this circuit a current tunnel. Its the most linear way of translating the voltage down to the bottom rail. The voltage gain of this section is about 4. The basic idea of the first two stages is to supply the third stage with a very fast low impedance drive signal that is referenced to the bottom rail.

The current sources in the second stage supply 2 mA each. With no signal, the FETs take 1 mA, leaving 1 mA going through the common base amplifier into the bottom transistor (which is wired as a vbe multiplier). This generates the 13 volts (referenced to – rail) necessary to properly bias the 3rd stage. The bottom transistor acts like a zener diode in series with a resistor, except a lot less noisy.

The third stage is another differential amplifier feeding another common base amplifier. The simple differential amplifier has a voltage gain of about 100. The common base amplifiers are used to reduce the miller effect on the differential pair. Since the miller effect depends on both gain and output voltage swing, reducing the output voltage swing of the bottom differential transistors significantly improves the speed of this circuit.

The fourth stage is an emitter follower driven by a constant current source (gain = 0.99). This output stage dissipates 12 watts total (3 watts per transistor x 4 transistors). The main design goal was low output impedance. For example, my electrostatic tube amp has a 50K load resistor and thus has a 50k output impedance. This amp has a 25 ohm output impedance (actually a little less with feedback) The result is a much more extended high end. The slew rate of the solid state amp is more than 5 times that of the tube amp.

For the output stage, each 2SC3675 sources or sinks 9 mA at a quiescent output voltage of zero volts referenced to ground. For the driver stage, each 2SC3675 sinks 1.1 mA, resulting in 1 VDC at the collector (referenced to ground). The bases of the 2SC2705s sit at about 16 volts (referenced to – rail). The overall open loop gain of the amplifier is about 2000, but feedback reduces it to 1000. Even without any feedback of any kind the total harmonic distortion of the amp is still under .02%.

gilmore2_2.gif

My first prototype, the unit in the pictures, uses an unregulated power supply. Given the stiffness of the capacitors, and the fact that the amplifier is pure class A, there is absolutely no fluctuation in voltage when signal is supplied. Of course, a regulated supply is always better. A regulated design is shown above. The 2SC3675 and 2SA1968 are mounted on heatsinks (the small tab ones are fine). The transformer is a Thordarson 24R22U (Allied # 704-0952). Adjust the pot to get 580VDC for the bias voltage.

The ±15 volt supply is an encapsulated fully regulated power supply brick from Sola Linear (Allied part number 921-9215), which retails for $117. I used a 60 mA version, but thats overkill, because the total current drain is about 12 mA for both channels. Lots of companies make these. It’s the black brick in the picture. It is NOT a switching supply. I do not use switchers in audio stuff if I can possibly help it.

Construction

gilmore2_3.gif
Download full size PC board designs and component layout 1
Download full size PC board designs and component layout 2
Download full size PC board designs and component layout 3

This project involves working with high voltages, so be extremely careful! Keep one hand behind your back at all times. 600VDC across both arms might possibly stop your heart.

All resistors are 0.5W. Most do not need to be. The 300K resistors in the top of the 3rd stage need to be 0.5W. The 150K resistor in the current drive in the last stage needs to be 0.5W. I am trying to find 2SA1968 transistors, which are 900 volt PNP types. If they are fast enough, then the two 300k resistors can be replaced with current sources instead, making the amp 100% current source driven.

The LEDs in the amplifier circuit are voltage references (1.7 volts types in the prototype) which track changes transistor voltage with temperature (low voltage zener diodes have tracking problems). They also serve to show that the unit is running properly. If the LEDs are not lit, something is wrong. You could always replace each LED with 3 1N914 diodes in series, but the LEDs look so pretty (reminds me of the glow of a vacuum tube).

I am using standard regular brightness red LEDs. The blue and green ones run at different voltages (blue = 2.6 volts, green = 2.1 volts). Using LEDs with voltage drops greater than 1.7V can affect biasing. Higher LED voltage drops in the first and second stages will tend to cancel each other out, and the numbers will be the same. That is, a higher voltage diode will increase the current sources from 2mA to maybe 3 mA (each), but at the same time, the current sink in the first stage will go from 2mA to 3 mA (total), so the net result is zero.

However in the final stage, a higher voltage diode will increase the standing power. As long as the heatsinking is good, an increase from 12 watts per channel to 15 or so is just fine. The transistors are actually good for 10 watts each, so it is possible to increase the bias to 40 watts per channel.

gilmore2_4

All 4 output transistors are mounted on one aluminum angle that bolts through the front panel to the heatsink. The mounting heatsink is 4″ x 5″ x 1/8″ aluminum plate, punched and then bent along the short axis. There are 4 holes that hold the transistors to the angle, and 5 holes that bolt the angle to the heatsink. The blue-finned heatsinks I found on some old power supplies. I used them because they were big enough and pretty at the same time. The 2 2SC3675 drivers have small standup heatsinks.

The two pots balance the output voltages to 0V referenced to ground. Begin the adjustment by putting a voltmeter between + output and – output and setting the first pot for zero volts. Then put a voltmeter between the + output and ground, and set the second pot for 0V. After the amplifier warms up for 30 minutes, adjust the pots again. I adjusted my unit once, and keep checking it every so often. The output voltages on my unit are less than ±200mV. Compared to the 580 volt bias, that is close enough to 0V. And that is over a 1-month period.

Assemble the output stage with care. The full output voltage swing exists between the bases and the collectors of the bottom output transistors. Poor soldering techniques combined with excess flux can cause an arc which may damage the transistors. It happened to me once.

gilmore2_5.jpg

The Stax jack is Allied part number 719-4043. For all headphones except the Stax Omegas, the plug fits in all the way. On the Omegas, the plug is a little fatter and does not fit in all the way, because the plastic center of the jack is about 0.25″ below the base of the metal rim. So I put the jack in a lathe, and took 0.25″ off the metal rim so that it is flush with the plastic insert. This modification does not affect the fit of other Stax headphone plugs. For details on how to wire the jack, see All-Triode Direct-Drive Tube Amps for Electrostatic and Electret Headphones.

The 2SC3675 is made by Sanyo. The 2SA1968 and 2SA1156 are from NEC. The rest of the transistors are from Toshiba. Here are the current prices:

2SK389 1.90 each
2SC1815 0.30 each
2SC380 .37 each
2SC2240 .55 each
2SA970 .79 each
2SA1156 .82 each
2SC2705 .49 each
2SC3675 1.56 each

In the USA, all of the Japanese semiconductors are available from B&D; Enterprises. B&D; takes credit cards. The entire semiconductor cost not including the power supply is about $50 USD. The parts are also available from MCM Electronics, Farnell and Newark Electronics. Since they are all the same company, these parts can be purchased just about anywhere in the world.

There are no recommended substitutes. No American manufacturer makes 900V PNP or NPN transistors with a low Cob anymore. Neither does Phillips of the Netherlands. The only manufacturers of these transistors are Sanyo and Toshiba, and only because they are heavily used in dynamic focus applications for large CRT monitors.

gilmore2_6.jpg

The enclosure is a Mod.U.Line by Precision Fabrication Technologies Inc. (part number 03-1209-BW) and is available from Newark Electronics, probably Allied too. It measures 3″ x 12″ x 9″.

The Results

I do not think that the Omega II headphones can be damaged by this amp unless the bias is set way too high. If the bias is set right, the outputs are close to 0V at idle, and all the LEDs are lit, then the amp pretty much has to be working correctly. Now if one or more of the outputs is stuck at +300V or -300V, then something is seriously wrong and needs to be fixed. An oscilloscope really helps.

The amp can output 800Vp-p or 1200Vp-p with headroom. At 800Vp-p, THD is less than .008% from 20Hz to 20kHz. The actual frequency response is 0 to 45khz (-3db at 45kHz) into an Omega II load. Compared to the sound of my previous tube amplifier, the bass is no longer tubby; it’s very sharp and tight. The high end is no longer rolled off, so female voices sound much more real. If the bias supply is reduced to 280V, the amplifier will drive all electrostatic headphones. I tried it last night on a pair of SRX’s. I never ever heard them sound so good.

Last weekend, I took home a standard dummy head, and measured the SPL in Omega 2 headphones driven by this amplifier. With a drive signal of 800 volts peak to peak per side, the resulting spl is 106db. THAT’S LOUD! The amp can put out 1200 volts peak-to-peak, and thats louder! I just ordered a pair of Stax SR-001 MkIIs, which can reach up to 120dB. My ears distort before the amplifer/headphones do. It is quite loud at clipping, but the clipping is a hard clip with no oscillation or ringing. To use the amplifier with electret headphones, delete the bias voltage. And probably keep the output swing under 200V. Electrets phones when driven with this amplifier can probably get very very loud.

[Editor: Contact the author to discuss the possibility of obtaining pre-etched PC boards for this amplifier.]

c. 2000, Kevin Gilmore.
From The Homepage of Kevin Gilmore. Republished with permission.

Addendum

2/21/01: Corrected mislabeled transistor part number: 2SC1815 (was 2SA1815).

9/5/01: Corrected mislabeled transistor part number: 2SC3675 (was 2SC367).

2/12/2002Richard Albers built the following version of the CDEA amp with some interesting modifications of the original circuit. He writes:

I have changed the 2SK389 FET for a MAT02 Dual Transistor in the first Stage of the CDEH-Amp. There were no problems, and it all worked fine from the start. It sounds much cleaner then with the Dual-Fets now, and I guess they add less harmonics to the music.

albers1.jpg

In the third Stage of the CDEH-Amp, I have changed the Voltage-Divider 350K/20K, which sets the Bases of the SC3675 at ca. 20V. For the 20K Resistor i have put in a 20V, 1.3W zener. For proper working, I set the current through the zener at 7mA. Two 25K ohm, 5W Mills non-inductive wirewounds replace the 350K, dissipating ca. 2.2W of heat. To reduce the zener noise, I have put a 4.7uF tantalum together with a 47uF electrolytic capacitor in parallel with the zener diode. Noise is no problem.

albers2

The Cabinet is a very simple construction, with the advantage of ease changing components or parts. There is only a wooden base with two side-panels. The front is the large heatsink together with an aluminium-angle. A suitable top-cover is under construction. The whole construction could be made way smaller, all parts on one pcb, with a smaller toroid-transformer, and all built in a industrial case, but for my own usage, it’s ok.

albers3

The two smaller transformers under the wooden cover are the 10H-chokes for the high voltage power supply. The little transformer on the bottom generates the bias-voltage. The oversized big-one is a special-made 250W transformer, from Experience-Electronics in germany. The electrolytics are from EPCOS (Siemens).

This is a further way to tune-up this fantastic machine. Together with the MAT02 dual-bipolar input device and using only the best parts you can get, such as non-inductive Caddocks, very low ESR electrolytic caps in the high voltage section, and so on, there is no better electrostatic headphone amp in the world. It sounds just fantastic!